Serving deep learning models in a serverless platform

نویسندگان

  • Vatche Ishakian
  • Vinod Muthusamy
  • Aleksander Slominski
چکیده

Serverless computing has emerged as a compelling paradigm for the development and deployment of a wide range of event based cloud applications. At the same time, cloud providers and enterprise companies are heavily adopting machine learning and Artificial Intelligence to either differentiate themselves, or provide their customers with value added services. In this work we evaluate the suitability of a serverless computing environment for the inferencing of large neural network models. Our experimental evaluations are executed on the AWS Lambda environment using the MxNet deep learning framework. Our experimental results show that while the inferencing latency can be within an acceptable range, longer delays due to cold starts can skew the latency distribution and hence risk violating more stringent SLAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Serverless Computation with OpenLambda

We present OpenLambda, a new, open-source platform for building next-generation web services and applications in the burgeoningmodel of serverless computation. We describe the key aspects of serverless computation, and present numerous research challenges that must be addressed in the design and implementation of such systems. We also include a brief study of current web applications, so as to ...

متن کامل

Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station

Evapotranspiration is one of the most important components of the hydrology cycle for planning irrigation systems and assessing the impacts of climate change hydrology and correct determination is important for many studies such as hydrological balance of water, design of irrigation irrigation networks, simulation of crop yields, design, optimization of water resources, nonlinearity, inherent u...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text

People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.08460  شماره 

صفحات  -

تاریخ انتشار 2017